Iron overload decreases CaV1.3-dependent L-type Ca2+ currents leading to bradycardia, altered electrical conduction, and atrial fibrillation.

نویسندگان

  • Robert A Rose
  • Michael Sellan
  • Jeremy A Simpson
  • Farzad Izaddoustdar
  • Carlo Cifelli
  • Brian K Panama
  • Mark Davis
  • Dongling Zhao
  • Moniba Markhani
  • Geoffrey G Murphy
  • Joerg Striessnig
  • Peter P Liu
  • Scott P Heximer
  • Peter H Backx
چکیده

BACKGROUND Chronic iron overload (CIO) is associated with blood disorders such as thalassemias and hemochromatosis. A major prognostic indicator of survival in patients with CIO is iron-mediated cardiomyopathy characterized by contractile dysfunction and electrical disturbances, including slow heart rate (bradycardia) and heart block. METHODS AND RESULTS We used a mouse model of CIO to investigate the effects of iron on sinoatrial node (SAN) function. As in humans, CIO reduced heart rate (≈20%) in conscious mice as well as in anesthetized mice with autonomic nervous system blockade and in isolated Langendorff-perfused mouse hearts, suggesting that bradycardia originates from altered intrinsic SAN pacemaker function. Indeed, spontaneous action potential frequencies in SAN myocytes with CIO were reduced in association with decreased L-type Ca(2+) current (I(Ca,L)) densities and positive (rightward) voltage shifts in I(Ca,L) activation. Pacemaker current (I(f)) was not affected by CIO. Because I(Ca,L) in SAN myocytes (as well as in atrial and conducting system myocytes) activates at relatively negative potentials due to the presence of Ca(V)1.3 channels (in addition to Ca(V)1.2 channels), our data suggest that elevated iron preferentially suppresses Ca(V)1.3 channel function. Consistent with this suggestion, CIO reduced Ca(V)1.3 mRNA levels by ≈40% in atrial tissue (containing SAN) and did not lower heart rate in Ca(V)1.3 knockout mice. CIO also induced PR-interval prolongation, heart block, and atrial fibrillation, conditions also seen in Ca(V)1.3 knockout mice. CONCLUSIONS Our results demonstrate that CIO selectively reduces Ca(V)1.3-mediated I(Ca,L), leading to bradycardia, slowing of electrical conduction, and atrial fibrillation as seen in patients with iron overload.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Currents Leading to Bradycardia, Altered Electrical Conduction, and Atrial Fibrillation

from altered intrinsic SAN pacemaker function. Indeed, spontaneous action potential frequencies in SAN myocytes with CIO were reduced in association with decreased L-type Ca current (ICa,L) densities and positive (rightward) voltage shifts in ICa,L activation. Pacemaker current (If) was not affected by CIO. Because ICa,L in SAN myocytes (as well as in atrial and conducting system myocytes) acti...

متن کامل

Functional role of voltage gated Ca2+ channels in heart automaticity

Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca(2+) dynamics contribute to pacemaker ac...

متن کامل

Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload.

Heart failure is the leading cause of mortality in patients with transfusional iron (Fe) overload in which myocardial iron uptake ensues via a transferrin-independent process. We examined the ability of L-type Ca2+ channel modifiers to alter Fe2+ uptake by isolated rat hearts and ventricular myocytes. Perfusion of rat hearts with 100 nmol/L 59Fe2+ and 5 mmol/L ascorbate resulted in specific 59F...

متن کامل

Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart

Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...

متن کامل

The Contribution of Ionic Currents to Rate-Dependent Action Potential Duration and Pattern of Reentry in a Mathematical Model of Human Atrial Fibrillation

Persistent atrial fibrillation (PeAF) in humans is characterized by shortening of action potential duration (APD) and attenuation of APD rate-adaptation. However, the quantitative influences of particular ionic current alterations on rate-dependent APD changes, and effects on patterns of reentry in atrial tissue, have not been systematically investigated. Using mathematical models of human atri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2011